TOPOLOGY I - MID-SEMESTRAL EXAM

Time : 2 hours

Max. Marks : 40

[4+4]

Answer all questions. You may use results proved in class after correctly quoting them. Any other claim must be accompanied by a proof.

- (1) Decide whether the following statements are *True* of *False*. Answers without correct and complete justifications will not be given any marks.
 - (a) $[0,1] \times [0,1)$ is a linear continuum in the dictionary order.
 - (b) The dictionary order topology and the product topology on $[0,1] \times [0,1]$ are identical.
 - (c) If τ is the usual topology on \mathbb{R} , then there exists a topology $\tau' \subseteq \tau$ such that (\mathbb{R}, τ') and S^1 are homeomorphic.
 - (d) If C is a connected subset of \mathbb{R}^2 , then Int C is path connected. [4x3]
- (2) Show that a function $f: X \longrightarrow Y$ between topological spaces is continuous if and only if for every subset $A \subseteq X$ we have $f(\bar{A}) = f(\bar{A})$. [4]
- (3) Let X be the quotient space obtained from $\mathbb{R} \times \{0,1\}$ by the equivalence relation generated by declaring

$$(x,0) \sim (x,1)$$

for every $x \in \mathbb{R}$ with |x| > 1.

- (a) Does X satisfy the T_1 axiom? Why or why not?
- (b) Is X Hausdorff? Why or why not?
- (4) Let X be the space

$$X = \{(x, x/n) : 0 \le x \le 1, n = 1, 2, \ldots\} \cup \{(x, 0) : 0 \le x \le 1\}$$

with the subspace topology of \mathbb{R}^2 . Show that X is not locally path connected. [8]

(5) Let \sim be the equivalence relation defined on S^1 by setting $x \sim y$ if and only if $x = \pm y$. Show that the quotient space S^1 / \sim is homeomorphic to S^1 . [8]